
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Atmospheric Pollution Research 12 (2021) 101172

Available online 17 August 2021
1309-1042/© 2021 Turkish National Committee for Air Pollution Research and Control. Production and hosting by Elsevier B.V. All rights reserved.

Global assessment of tropospheric and ground air pollutants and its 
correlation with COVID-19 

H.R. Naqvi a,*, G. Mutreja b, M. Hashim a, A. Singh a, M. Nawazuzzoha a, D.F. Naqvi c, M. 
A. Siddiqui a, A. Shakeel a, A.A. Chaudhary d, A.R. Naqvi e 

a Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India 
b Environmental Systems Research Institute, R & D Center, New Delhi, India 
c ZiMetrics Technologies Pvt. Ltd., Pune, India 
d Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 13317-7544, Saudi Arabia 
e Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Pandemic lockdown 
Tropospheric pollutants 
Air quality 
Mortality 

A B S T R A C T   

The declaration of COVID-19 pandemic by the WHO initiated a series of lockdowns globally that varied in 
stringency and duration; however, the spatiotemporal effects of these lockdowns on air quality remain under
studied. This study evaluates the global impact of lockdowns on air pollutants using tropospheric and ground- 
level indicators over a five-month period. Moreover, the relationship between air pollution and COVID-19 
cases and mortalities was examined. Changes in the global tropospheric (NO2, aerosols, and O3) and ground- 
level (PM2.5, PM10, NO2, and O3) pollutants were observed, and the maximum air quality improvement was 
observed immediately after lockdown. Except for a few countries, a decline in air pollutants correlated with a 
reduction in Land Surface Temperature (LST). Notably, regions with higher tropospheric NO2 and aerosol con
centrations were also COVID-19 hotspots. Our analysis showed moderate positive correlation for NO2 with 
COVID-19 cases (R2 = 0.33; r = 0.57, P = 0.006) and mortalities (R2 = 0.40; r = 0.63, P = 0.015), while O3 
showed a weak-moderate positive correlation with COVID-19 cases (R2 = 0.22; r = 0.47, P = 0.003) and 
mortalities (R2 

= 0.12; r = 0.35, P = 0.012). However, PM2.5, and PM10 showed no significant correlation with 
either COVID-19 cases or mortality. This study reveals that humans living under adverse air pollution conditions 
are at higher risk of COVID-19 infection and mortality.   

1. Introduction 

In December 2019, Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2) was identified in Wuhan, China, which was associated 
with a pneumonia-like illness termed Coronavirus Disease-19 (COVID- 
19). The virus spread rapidly worldwide, and by the end of January 
2020, the World Health Organization (WHO) declared COVID-19 a 
pandemic (Huang et al., 2020; Cucinotta and Vanelli, 2020), which 
initiated a series of lockdowns in various countries commencing in 
Wuhan, China on January 23, 2020, and subsequently imposed by Italy 
(March 10), Spain (March 14), France (March 18), India (March 25), 
Iran (March 28), and globally by April (Sicard et al., 2020). Depending 
on the severity of transmission in different countries, lockdown required 
partial or complete containment of public interactions, leading to a halt 

in anthropogenic activities. 
Daily pollutant emissions from industries, traffic, and the energy 

production sectors significantly contribute to poor air quality and 
adversely affect human health and quality of life. According to a 2014 
WHO report, one out of every eight deaths worldwide is attributed to air 
pollution amounting to 4.9 million deaths per year (WHO, 2014). Ac
cording to a 2017 study, O3 and PM2.5 caused 0.5 million and 3 million 
deaths, respectively, globally (State of Global Air, 2019). It was pre
dicted that maintaining PM2.5 concentrations based on the WHO 
guidelines would likely increase the life expectancy in 11 of the most 
populated countries. 

The evaluation of environmental pollutants during the COVID-19 
lockdown revealed variations (increase or reduction) in the levels of 
NO2, PM, CO, O3, and other APs, indicating that a temporary pause in 
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human activities can restore air quality within a few months (Sicard 
et al., 2020; Nakada and Urban, 2020), and the improved air quality was 
correlated with a decline in air pollution-related deaths during the 
lockdown period (Dutheil et al., 2020). Interestingly, the relationship 
between air pollution and cases/mortalities related to SARS-CoV-2 
further highlights that exposure to environmental pollutants may 
exacerbate the clinical manifestation of COVID-19 (Zhu et al., 2020; 
Conticini et al., 2020). People residing in polluted regions are more 
prone to viral infection and may succumb to illnesses due to a weakened 
immune system, primarily caused by the inhalation of toxic APs 
(including PM2.5, PM10and NO2) (Viehmann et al., 2015; Schraufnagel 
et al., 2019). Solimini et al. showed a positive association of exposure to 
air-borne particulate matter (PM2.5 and PM10) with COVID-19 cases and 
indicated that a slight increase in these pollutant indicators may exac
erbate disease severity (Solimini et al., 2021). Another study also 
revealed a direct relationship between the concentration of PM2.5 and 
COVID-19 mortality using machine-learning analysis (Mele and Mag
azzino, 2020). Multiple studies have shown a significant positive cor
relation of NO2 and PM2.5with COVID-19 cases and mortalities and 
considered them dominant environmental factors responsible for 
adverse outcomes (Zhu et al., 2020; Yao et al., 2020; Konstantinoudis 
et al., 2020; Ogen, 2020; Pansini and Fornacca, 2020). Previous 
short-term studies have examined the correlation between the 
COVID-19 lockdowns and air quality restoration at a national and 
regional levels (Shrestha et al., 2020; Urrego and Urrego, 2020); how
ever, only limited studies have examined the global assessment of 
tropospheric and ground-level APs during the COVID-19 pandemic and 
the correlation between COVID-19 cases/mortalities and ground-level 
pollutant levels. 

In this study, we systematically and comprehensively evaluated 
spatiotemporal changes in multiple tropospheric (NO2, aerosols, and O3) 
and ground-level (PM2.5, PM10, NO2, and O3) pollutants from Januar
y–May 2020 (post-lockdown) and compared them with the corre
sponding months in 2019 (pre-lockdown). Our findings explicitly show a 
correlation between the COVID-19 lockdown and global improvement 
in air pollution levels and provide a strong evidence that higher 
pollutant concentrations in densely populated areas disproportionately 
predispose humans to COVID-19-associated mortalities. 

2. Materials and methods 

2.1. Data assimilation for the global assessment of air pollution 
parameters 

Remote sensing data were analyzed utilizing the Google Earth En
gine platform, which enabled the geospatial analysis (Gorelick et al., 
2017). NO2 and O3 data were collected from the Copernicus Sentinel-5 
Precursor Tropospheric Monitoring Instrument, which is widely uti
lized for air quality applications (Veefkind et al., 2012) and is beneficial 
for monitoring daily NO2 concentrations (Tobías et al., 2020). 
MCD19A2.006: Terra and Aqua MAIAC Land Aerosol Optical Depth 
(AOD) Daily 1-km global datasets were obtained through the United 
States Geological Survey portal (USGS: https://lpdaac.usgs.gov/produ 
cts/mcd19a2v006/), and the values were visualized (upscaled) from 
0 to 1000 and utilized to determine the variations in atmospheric 
aerosols. For Land Surface Temperature (LST) analysis and spatial 
variation, MOD11A1.006 Terra LST and Emissivity Daily Global 1-km 
data products (Wan et al., 2015) were utilized. A global spatiotem
poral analysis was performed for January–May 2019 and 2020. The 
COVID-19 lockdowns drastically influenced the air pollutants level; 
therefore, the daily average NO2, O3, and AOD values (January–May) 
were extracted and converted to monthly average values for 12 major 
countries (Brazil, Canada, China, France, Germany, India, Iran, Italy, 
Russia, Spain, the UK, and the USA), which were (and remain) 
COVID-19 hotspots. Moreover, the impact of air quality on radiant 
emissivity was assessed utilizing LST data for the same period, and 

detailed analyses were performed for multiple countries. 
Average daily ground pollutant data of more than 40 major locations 

worldwide, obtained from the World-wide Air Quality Monitoring Data 
Coverage website (https://aqicn.org/sources/), were utilized to analyze 
monthly average changes in air pollutants (January–May 2019 and 
2020) using ground-level PM2.5, PM10, NO2, and O3 concentrations (Fu 
et al., 2020; Hashim et al., 2021; Kumari and Toshniwal, 2020; Liu et al., 
2021). To assure that the air pollutant changes were caused by the 
COVID-19 lockdowns in 2020, we compared data from Berlin, Cardiff, 
Delhi, Istanbul, Madrid, Milan, Moscow, Mumbai, New York City, Paris, 
Quebec, Sao Paulo, and Wuhan for the corresponding period in 2019, 
due to their data availability. The percent change for all the APs was 
calculated and represented graphically for each country and city. 

2.2. COVID-19 mortality and AP correlation/regression analysis 

Pearson’s correlation and linear regression analyses were performed 
to assess the relationship between COVID-19 cases/mortalities with the 
four ground-level APs (PM2.5, PM10, NO2, and O3). We used strong, 
moderate and poor correlation criteria defined by Ratner (2009). Based 
on this, correlation coefficient values between 0 and 0.3 indicate a weak 
positive linear relationship, between 0.3 and 0.7 indicate a moderate 
positive linear relationship and between 0.7 and 1.0 indicate a strong 
positive linear relationship. The COVID-19 cases and mortality data are 
available by country, but very few places have available data at the city 
level (Coronavirus COVID-19 Live Tracker Johns Hopkins; htt 
ps://www.grainmart.in/news/coronavirus-covd-19-live-cases-tracker 
-john-hopkins/). Based on the data availability, we selected 20–22 cities 
for correlation analysis. After initial findings, we removed multiple 
outliers that might have skewed the results. For final analysis, 15–17 
cities were selected (Berlin, Cardiff, Castello, Hualqui, Limburg, Madrid, 
Boston, Milan, Moscow, Mumbai, Jersey City, New York City, Rome, 
Stockholm, Ventanas, and Wuhan) for which COVID-19 case
s/mortalities and in situ ground-level air quality indicator data were 
available. These locations represent major COVID-19 hotspots with 
>5000 reported COVID-19 cases as of June 22, 2020. For consistency of 
our COVID-19 datasets, we did not account for the lag times due to the 
SARS-CoV-2 incubation period (generally considered as 15 days). 

3. Results 

3.1. Marked reduction in the tropospheric NO2 density 

Global reductions in tropospheric NO2 concentrations were observed 
post-lockdown compared with pre-lockdown concentrations (Fig. 1 and 
fig. S1). The NO2 column density concentrations are indicated by cyan 
and red patches for concentrations ranging from 0.00001 to 0.0001 mol/ 
m2. In January 2020, the concentration of red and yellow patches was 
high over Asia (China, India, Iran, and Iraq), Europe (Germany, Italy, 
Poland, UK, and France), North America (USA and Canada), Russia, and 
some equatorial African nations (Fig. 1, a and fig. S1, a). The earliest 
indication of the impact of the lockdowns on the NO2 levels occurred in 
China, where the concentration reduced from 0.0001 to 0.00005 mol/ 
m2 (January to February 2020, respectively), and the concentration of 
red patches diminished. Compared to the corresponding months in 
2019, no apparent changes were observed for the rest of the regions 
except Germany and Poland (Fig. 1, b and fig. S1, b). The immediate 
improvement in NO2 levels that occurred post-lockdown was evident as 
pollutant concentrations decreased over most countries. Notably, in 
March, an increase in red patches was observed over China and gener
ally remained the same until April 2020 compared with the corre
sponding 2019 data (Fig. 1c and d, and fig. S1, c and d). NO2 
concentrations declined to <0.00005 mol/m2 by the end of May in most 
countries (Fig. 1e and fig. S1, e). 

To assess the lockdown impact on tropospheric NO2 concentrations, 
monthly averages (January–May 2020) were obtained for 12 major 
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Fig. 1. COVID-19 lockdown impact on tropospheric NO2 in 2020. Map showing global satellite-derived average NO2 concentrations in (a) January, (b) February, (c) 
March, (d) April, and (e) May. A gradual decline in global tropospheric NO2 is evident in most regions, as observed by the reduction in red patches. (f) Histograms 
showing the average tropospheric NO2 concentration (mol/m2) variations in 12 countries (representing Asia, Europe, and North and South America) with high 
COVID-19 cases as of June 22, 2020. (g) Percentage change in tropospheric NO2 of selected countries for January–May 2020 compared to the corresponding period in 
2019. The quantitative reduction in tropospheric NO2 corroborates with the qualitative decline determined by the global spatial variations map. 
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COVID-19 hotspot countries (Fig. 1f), and then, the percentage change 
from January–May 2019 was calculated. The major variation in the 
reduction percentage values in most of the countries was observed in the 
post-lockdown months. The overall average (January–May) values were 
considered to also cover partial and temporary lockdown durations. The 
most prominent impacts on NO2 were observed in China and India, with 
average reductions of 28.39% and 15.9%, respectively, in the first 
months of lockdown (Fig. 1g and Table S1). European countries 
benefited from the lockdowns during the study period. The overall 
average NO2 concentrations (mol/m2) were high in the UK (3.516E-05), 
Germany (5.398E-05), Italy (4.098E-05), and France (2.811E-05) from 
January–May 2019 (Table S1), and this study calculated average de
creases of 10.60%, 8.19%, 7.47%, and 1.79% in the UK, Germany, Italy, 
and France, respectively (Fig. 1g). In both periods, the average NO2 
concentrations were higher in Italy and Germany than in the rest of the 
countries (Fig. 1f and fig. S1, f). These regions are industrialized and 
highly populated, which are known major NO2 emission contributors in 
Italy (Leibniz Institute for Tropospheric Research (TROPOS), 2020), 
resulting in higher pollutant concentrations in these countries. Iran 
(0.13%) and Spain (1.79%) exhibited the smallest NO2 reductions; 
however, a drastic cyclic pattern for the NO2 concentrations was 
observed in the USA and Russia, which decreased in March, increased in 
April, and decreased again in May (Fig. 1g and Table S1). 

3.2. Global variations in aerosols under COVID-19 lockdown 

Aerosol optical depth (AOD) is a quantitative estimate of aerosols 
(scaled up values) within a column of air from the surface of the earth to 
the top of the atmosphere. These aerosols are generated by human ac
tivities such as vehicular and industrial emissions, dust particles 
generated in mining, and urban smog. The COVID-19 lockdown resulted 
in the shutdown of all economic activities, curbing aerosol emissions. 
The AOD maps for January–May 2019 and 2020 show the global pat
terns and reductions in the aerosol concentrations (Fig. 2a–e, and fig. S2, 
a toe). Compared with 2019, the concentration and spread of the blue 
patches, which represent lower AOD values, are evident in 2020. 
Generally, the AOD values, represented by yellow-red patches, were 
high (scaled up values 700–1000) in China, India, and the west-central 
African nations. These concentrations remained stable in India, exhibi
ted a reasonable decline in eastern China, and increased in west-central 
Africa and southeast Australia in February 2020 (Fig. 2a and b). The 
AOD values almost vanished over these regions by the end of March 
2020 (Fig. 2c), whereas the AOD values in these regions increased in 
March 2019 compared to January–February 2019 and the correspond
ing period in 2020 (fig. S2, a–c). 

New epicenters of high aerosol density were observed in Vietnam, 
Thailand, Peru, and Cambodia. In China, the aerosols over the central- 
eastern region shifted toward the southeast, which further increased 
in April 2020 (Fig. 2, d and fig. S2, d). The AOD values improved 
drastically in the aforementioned countries in the Northern Hemisphere, 
whereas the intensity remained similar in the Southern Hemisphere in 
May 2020 compared to those of January–April 2020 and 2019 (Fig. 2, e 
and fig. S2, e). These variations in the different countries are evident in 
the histograms for January–May 2019 compared with those of the 
lockdown period of January–May 2020 (Fig. 2, f and fig. S2, f). 

Next, an AOD values percentage change analysis was performed for 
12 countries representing Asia, Europe, and North and South America. 
In China, Russia, Canada, and the USA, average AOD values were higher 
in all the lockdown months except May compared to the corresponding 
2019 concentrations due to the unavailability of satellite datasets in the 
extreme Northern Hemisphere nations. Considering this drawback in 
extracting the average AOD values that may have influenced the output, 
our visual interpretation of China indicates that, the extent of high 
aerosol concentrations represented by red patches reduced in February 
2020 (post-lockdown). Unlike the other countries where abrupt changes 
in the AOD occurred during lockdown, stable AOD values were observed 

in Brazil, with an average reduction of 10.69% during the study period 
(Fig. 2, g and Table S1). Overall average reductions (January–May 
2020) were observed in Russia (7.48%), Canada (5.79%), and the UK 
(2.49%) (Fig. 2, g and Table S1). In May, reduction in AOD values were 
observed in the USA (22.6%), Italy (22.8%), and Canada (41.5%). 
Interestingly, the overall average AOD values increased in Spain 
(39.22%) and China (13.24%) but reduced in the post-lockdown 
months. However, in the rest of the studied countries, the average 
AOD values increased by 6%, particularly in India, where the AOD 
values was high in February due to seasonal crop residue fires in the 
northern states (Punjab, Haryana, and Western Uttar Pradesh). 

3.3. Restoration of tropospheric ozone concentration post-lockdown 

Compared to 2019, we observed significant changes (generally 
reduction) in the tropospheric O3 concentrations during the study 
period (Fig. 3a–e), highlighting the beneficial outcome of the lockdown. 
The O3 concentrations were similar from January–May 2019. O3 con
centrations ranging from 0.15 to 0.2 mol/m2 were observed in the 
Northern Hemisphere countries, particularly above the 231/2 North 
latitudes, whereas lower concentrations (0.1–0.15 mol/m2) were re
ported in the Southern Hemisphere. The O3 concentrations were 
comparatively high in these regions in the corresponding months of 
2019 (fig. S3, a–e). In January 2020, the concentrations of the red and 
yellow patches (0.15–0.2 mol/m2) were greater in Canada, the USA, 
Russia, and northern China, which consistently increased until February 
2020 (Fig. 3a and b). However, in February, the concentration increased 
in Canada, whereas minimal concentrations were observed in eastern 
Russia. Although the O3 concentrations were high during the corre
sponding 2019 periods, they can be compared utilizing the concentra
tion of the red patches (fig. S3, a and b). The O3 concentrations began 
increasing over Europe (France, Germany, Poland, and Italy) in March 
2020; however, they reduced over North America, drastically increased 
over Russia, and gradually increased in India, Australia, Africa, and 
South America, as evidenced by the conversion of the dark blue patches 
to cyan at the end of March 2020. This pattern was similar during the 
corresponding months in 2019; however, the intensity of the changes 
was greater in 2020 than in 2019 (Fig. 3, c and fig. S3, c). In April 2020, 
the tropospheric O3 concentrations over both hemispheres were 
extremely minimal and incomparable except for the drastic increase 
over North America. Minimal improvement was observed over Europe 
and northern China (Fig. 3, d and fig. S3, d). Tropospheric O3 column 
concentrations showed global reduction in 2020, whereas its concen
trations and their intensities (notice the color-coded spectrum) were 
high throughout the corresponding months in 2019 (Fig. 3, e and fig. S3, 
e). 

The O3 concentrations, patterns, and variations in each month were 
similar, whereas the spatial coverage of the concentrations and their 
intensities were different (Fig. 3, f and fig. S3, f). In 2019, the five-month 
average tropospheric O3 concentrations (mol/m2) were highest in 
Russia (0.190), Canada (0.182), and Germany (0.160), and the lowest 
concentrations were observed in Brazil (0.115) and India (0.117). In 
2020, these average O3 concentrations declined in Canada (0.172), 
Russia (0.165), and the USA (0.158), leading to O3 pollution (Table S1). 
It was observed that in Russia, Canada, and Brazil, the O3 concentrations 
reduced monthly; India was the only country where the concentrations 
increased every month, and the rest of the countries had decreased 
concentrations mainly in April and May (Fig. 3, g). 

3.4. Spatiotemporal changes in global land surface temperature (LST) 

Aerosols, believed to have a critical impact on LST, reduce the LST in 
two ways. First, they cause a reduction in surface isolation by absorbing 
and scattering. Second, sulfate aerosols found in abundance over in
dustrial regions have a cooling effect (Freychet et al., 2019; Jin et al., 
2010; Steiner et al., 2013; Huang et al., 2006). Comparison of the LST 
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Fig. 2. Pre- and post-lockdown tropospheric aerosol concentrations worldwide. Global atmospheric aerosol optical density (AOD) data were procured, and the 
scaled-up values (from 0 to 1000) were mapped for (a) January, (b) February, (c) March, (d) April, and (e) May 2020. A marked decline is evident in China, India, 
West Africa, Australia, and Brazil. Compared to those in January 2020, the red/yellow patches denoting high AOD values changed to green/blue by May 2020, 
indicating AOD reductions. (f) Histograms showing average AOD values variations in 12 countries. (g) Percentage change in tropospheric AOD values in 12 countries 
from January–May 2020 compared to the corresponding period in 2019. 
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Fig. 3. Spatiotemporal changes in O3 concentrations in 2020. World map showing O3 spatial variations in (a) January, (b) February, (c) March, (d) April, and (e) 
May. (f) Histograms for 12 selected countries showing monthly average O3 concentrations (mol/m2). (g) Percentage change in O3 concentrations for the 12 selected 
countries from January–May 2020 compared to the corresponding period in 2019. 
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maps for January–May of 2019 and 2020 revealed that the LST has 
increased over the Northern Hemisphere (LST range of 25–50 ◦C). 
Moreover, the variation in LSTs (0–25 ◦C) and pixel transformation from 
green to yellow indicates the increased changes in the Northern Hemi
sphere. However, decreasing trends were observed in the Southern 
Hemisphere as the intensity of red patches was suppressed gradually 
over time due to the shifting of the location of the sun (Fig. 4a–e, and fig. 
S4, a to e). This is attributed to summer onset in the Northern Hemi
sphere, particularly between the equator and the Tropic of Cancer. 
Similar increasing LST patterns were observed from temperate to Polar 
Regions where the color patches steadily changed from blue to green 
(LST values of − 50 to 0 ◦C). The changes were opposite in the Southern 
Hemisphere (Fig. 4a–e, and fig. S4, a to e). 

The histograms show a similar pattern for 2019 and 2020, and the 
average LST indicates that the values increased continuously from 
January to May in 2019 and 2020 for all 12 studied countries (Fig. 4, f 
and fig. S4, f). The examination of the 2020 global LST maps shows 
increasing (five-month average) trends in various countries, such as 
China (14%), Italy (15%), and France (15%), compared to the 2019 LST 
maps, whereas reductions were observed in these countries in March. 
The remaining countries (Iran, the UK, Canada, and the USA) showed an 
LST increase of up to 4%. A higher reduction percentage throughout the 
period was observed in tropical and temperate nations such as India 
(4.74%), Brazil (1.59%), and Spain (3.42%). A similar observation was 
observed in Russia, which is under sub-polar climate conditions (Fig. 4, 
g) and has a large geographical area that could have influenced the 
average LST. In Canada, the LST primarily increased in March (27%) and 
April (19%); however, a marked decrease (29%) occurred in May 
(Table S1), which is attributed to a sudden increase in the AOD. Brazil, 
with no imposed lockdown, showed a consistent decline in LST per
centage change from January–May 2020, and the LST changes were 
minimal. Fluctuations from January–May 2020 were observed in the 
USA due to the partial lockdowns enforced in different areas of the 
country (Fig. 4, g). 

Only India showed a consistent decrease in the LST percentage 
change among the studied countries because a strict countrywide lock
down was enforced until the end of May 2020. These findings indicate 
that an LST decrease correlates with a concomitant reduction in ground- 
level air quality (including PM), tropospheric NO2 density, and 
improved O3 concentration post-lockdown. A comparison of the April 
2020 AOD values and LST percentage change showed that a negative 
change in AOD values correlates with a positive change in LST and vice 
versa (Fig. 3, g and Fig. 4, g), suggesting that the reduction in aerosols is 
linked to an increase in the LST during the lockdown in 2020. 

3.5. Ground-level air pollutant levels in major locations worldwide 

Global satellite datasets do not yield accurate ground-level pollutant 
concentrations, which have a significant impact on human health. 
Therefore, in this study, ground-level air pollutant data of PM2.5, PM10, 
NO2, and O3 (μg/m3) were collected, based on availability, for more 
than 40 locations worldwide to assess patterns and post-lockdown 
trends. The locations selected represent the countries included in the 
tropospheric pollutant comparison analysis. The monthly average PM2.5 
and PM10 concentrations were highest in Asia (Delhi, Mumbai, Kolkata, 
Dhaka, Wuhan, Istanbul, Tehran, Dubai, and Singapore), followed by 
Europe (Milan, Rome, Paris, Berlin, Madrid, Zurich, Saint Petersburg, 
and Offange), North America (New York City, Jersey City, Boston, 
Merced Mexico, Metepec Toluca, and Quebec), and South America (Sao 
Paulo, Carapungo Quito, and Ventanas) (Fig. 5a and b). 

An apparent reduction in PM was observed in Indian cities (Delhi, 
Mumbai, and Kolkata), which had two-fold higher PM concentrations 
than the rest of the studied locations. The overall average PM2.5 and 
PM10 concentrations were highest in Mumbai (227 μg/m3 for both), 
Delhi (198 and 230 μg/m3, respectively), and Kolkata (150 and 147 μg/ 
m3, respectively) (Table S2). In these cities, PM concentrations were 

apparently highest in January and February, declined in March, and 
further decreased in April and May 2020 (Fig. 5a and b) during the 
COVID-19 lockdown. A similar trend was observed for NO2, which 
showed minimal concentrations by the end of May 2020. The average 
NO2 concentrations (μg/m3) were highest in Tehran (41.62), Delhi 
(34.23), and Istanbul (33.03), followed by Ankara, Paris, and Zurich, 
and the lowest NO2 concentrations mainly occurred in March 2020 in 
these areas (Fig. 5, c and Table S2). This could be primarily attributed to 
the traffic restrictions in these locations during the lockdown. However, 
the O3 concentrations were low until February and increased in April 
and May 2020 (Fig. 5c and d), which is the opposite pattern to the NO2, 
PM2.5, and PM10 concentration patterns. The monthly average O3 con
centrations (μg/m3) from January–May 2020 were highest in Santana 
(79.51), Stockholm (65.38), Bray (65.21), and Delhi (56.47), and 
decreased sharply after the lockdown was initiated in March (Fig. 5, 
d and Table S2). 

The average monthly data of 11 cities corroborates with the tropo
spheric air pollutants obtained from the satellite data. Comparative 
analysis of the 2019 and 2020 data showed reductions (>20% in most 
places) in PM2.5 and PM10 in all the investigated cities, except for Milan 
and Madrid (Fig. 6a and b). The spatial distribution, direction, and 
magnitude of PM changes near the surface are substantially different 
from those of the tropospheric aerosols assessed via satellite data, 
indicating the significance of monitoring ground-level changes in air 
pollution compared to satellite-retrieved global patterns and trends. The 
lockdown impact provided up to a 50% reduction in PM in Madrid, 
Milan, Moscow, and Mumbai (Fig. 6, c). The O3 concentration percent 
change increased (>30%) in most cities but was reduced in Madrid and 
Sao Paulo across all months. Interestingly, Delhi recorded a continuous 
increase in the O3 concentration throughout the study period and saw a 
maximum increase (up to 120%) in April and May (Fig. 6, d). 

3.6. Correlation analysis of COVID-19 cases/mortalities and APs 

This study attempted to determine whether humans in regions with 
high AP concentrations are more vulnerable to COVID-19 infection/ 
mortality and which APs are predominantly associated with COVID-19. 
To evaluate this, data was obtained from 15 cities including Berlin, 
Cardiff, Castello, Hualqui, Limburg, Madrid, Boston, Milan, Moscow, 
Mumbai, Jersey City, New York City, Rome, Stockholm, Ventanas, and 
Wuhan, representing Asia, Europe, and North and South America. These 
locations were selected based on the availability of both the required 
data and having a minimum of 5000 COVID-19 cases as of June 22, 
2020. New York City had the highest number of cases (213,056) and 
mortalities (22,343), followed by Milan, Wuhan, and Madrid, whereas 
the lowest number of cases (<10,000) and mortalities (<215) were re
ported in Hualqui, Berlin, and Moscow (Fig. 7a and b). 

A linear regression and correlation analysis of the COVID-19 cases 
and mortalities with the NO2, PM2.5, PM10, and O3 concentrations was 
performed for the aforementioned locations. Depending on the pollutant 
data availability, we initially performed analysis including 20–22 cities 
globally. However, we did not notice any correlation values for PM2.5 
(fig. S5, a and b), PM10 (fig. S5, c and d) or O3 (fig. S5, g and h) due to 
outliers except NO2 (for cases- R2 = 0.06; r = 0.24; for mortalities- R2 =

0.07; r = 0.28) and (fig. S5, e and f). For subsequent analysis, we 
therefore removed 5–6 outliers to obtain more reproducible results. 
Accordingly, our analysis showed highest correlation between NO2 and 
COVID-19 cases (R2 = 0.33; r = 0.57, P = 0.006) or mortalities (R2 =

0.40; r = 0.63, P = 0.015) (Fig. 7c and d). O3 showed a weak-moderate 
positive correlation with COVID-19 cases (R2 = 0.22; r = 0.47, P =
0.003) and mortalities (R2 = 0.12; r = 0.35, P = 0.012) (Fig. 7e and f), 
while PM10 and PM2.5 showed no association with COVID-19 cases (R2 

= 0.08 and 0.001; r = − 0.29 and − 0.03, respectively) or mortalities (R2 

= 0.071 and 0.028; r = − 0.31 and 0.16), respectively (fig. S6, a to d). 
These results evidently show that higher pollutant (particularly NO2 and 
O3) levels likely exacerbate COVID-19 infection and mortality. Overall, 
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Fig. 4. 2020 Land surface temperatures (LSTs). World map showing average LSTs (in ◦C) in (a) January, (b) February, (c) March, (d) April, and (e) May. The 
intensity of red patches increases over the Northern Hemisphere and decreases in the Southern Hemisphere. (f) Histograms showing LST variations in 12 selected 
countries. LST has a direct relationship with solar radiation, and the analyzed countries were primarily located in the Northern Hemisphere. The graphs show 
increasing trends from January–May 2020, except in Brazil, which is located at the equator. (g) LST percentage changes show a marked decline in most of the 
studied countries. 
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both ground-level and tropospheric pollutants can be utilized to predict 
the adverse outcomes of COVID-19 infection and mortality. 

4. Discussion 

In this study, a five-month (January–May 2019 and 2020) compre
hensive analysis of global tropospheric and ground-level AP indicators 
was performed to assess the impact of the COVID-19 lockdowns. This 

Fig. 5. Ground-level air pollutant concentrations in major locations worldwide. Stacked bars showing monthly average (January–May 2020) (a) PM2.5, (b) PM10, (c) 
NO2, and (d) O3 concentrations (μg/m3) in 45 highly populated COVID-19 hotspot locations. Asian cities had the highest PM2.5 and PM10 concentrations, and most of 
the locations had high NO2 and O3 concentrations. 

Fig. 6. Reduction in the ground-level air pollutants in metropolitan cities. Percentage change in the ground-level (a) PM2.5, (b) PM10, (c) NO2, and (d) O3 con
centrations (μg/m3) in 11 major metropolitan cities for which both 2019 and 2020 air quality monitoring data was available. Monthly concentration averages from 
January–May 2020 were compared to the corresponding period in 2019. 
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analysis is unique from previous reports that performed ground-level 
and tropospheric pollutant analyses only between January–March 
2020 (Venter et al., 2020) because during the January–March 2020 
period, most countries had not yet imposed or had only recently imposed 
a COVID-19 lockdown. In this systematic, unbiased, and long-term 
analysis, we assessed global AP levels during pre- and post-lockdown 
periods and correlated the association between APs and COVID-19 
cases/mortalities. The results revealed a drastic reduction in tropo
spheric NO2 and AOD and ground-level PM2.5, PM10, and NO2. Inter
estingly, the ground-level NO2 and O3, respectively, showed moderate 
(0.3–0.7) and weak-moderate (0.1–0.5) positive correlation with both 
COVID-19 cases and mortality. Our findings unequivocally demonstrate 
that the COVID-19 lockdowns improved global air pollution and identify 
specific pollutants as the predictors of the adverse outcomes of 
COVID-19. 

A decline in tropospheric NO2 concentrations was observed imme
diately post-lockdown, and these concentrations were maintained 
throughout the study period. The calculated average (January–May) 
NO2 concentrations showed that major reductions occurred in Asian 
countries such as China and India. Previous studies reported similar 
observations that showed a 30% NO2 reduction over Chinese cities 
(Dutheil et al., 2020; NASA, 2020). The average reduction determined 
by this study was 11.24%, which agrees with previous studies that 
determined NO2 reductions of <12% post-lockdown over India (Biswal 

et al., 2020; Naqvi et al., 2020; Singh and Chauhan, 2020). In the urban 
regions of Brazil, a 54.3% post-lockdown reduction in NO2was previ
ously reported, supporting the results of this study (Nakada and Urban, 
2020). Marked improvement in NO2 concentrations (~30% decrease) 
were recorded post-lockdown in Europe (Spain, Italy, and France) and 
the UK (ESA , 2020; Gautam, 2020). 

For most of the countries investigated in this study, a reduction in the 
AOD was primarily observed in April and May 2020, suggesting that the 
length of time required assessing atmospheric levels is greater than the 
time required to assess tropospheric NO2 levels. This is because aerosols, 
unlike other pollutants, do not settle. Accordingly, the AOD results in 
this study showed a major reduction in May 2020 compared to May 
2019 in most of the investigated countries. Similar trends in AOD 
reduction were reported in a recent study that conducted a global 
analysis of APs post-lockdown (Venter et al., 2020). Additionally, 
several regional studies have documented AOD reductions in their 
findings, which support the results of this study. The AOD index score of 
>0.9 over eastern China until February 2020 was reduced compared to 
the corresponding period in 2019 (Fan et al., 2020). The National 
Aeronautics and Space Administration reported that aerosol concen
trations recorded in India during the lockdown were the lowest in the 
past 20 years (Huang et al., 2006). In the European countries, the AOD 
values decrease also portrayed similar findings to previous studies that 
showed decrease in aerosol concentration over urban and rural regions 

Fig. 7. Correlation analysis of NO2 and O3 with COVID-19 cases and mortality. Histograms showing COVID-19 (a) cases and (b) mortalities in 15 highly populated 
locations. These locations were selected based on the availability of ground-level AP and COVID-19 cases/mortalities data. Only locations with >5000 COVID-19 
cases (as of June 22, 2020) were considered for this analysis. The linear regression analysis results of COVID-19 cases and mortalities with (c and d) NO2 (μg/ 
m3) and (e and f) O3, respectively. 
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(Menut, 2020). European AOD values in March 2020 were influenced by 
dry weather with easterly winds that carry mineral dust from West Asia, 
which explains some of the positive aerosol anomalies during this 
period. As most of the long-distance dust transport occurs above the 
boundary layer (Dentener et al., 2010), these aerosol anomalies do not 
necessarily represent ground-level PM2.5 trends. 

O3 concentrations followed a pattern similar to that of the AOD. The 
lockdown impact on NO2, which has an atmospheric lifetime of 
approximately one day, is discernible locally, whereas O3, which has a 
lifetime of days-weeks, is affected by long-distance transport associated 
with specific weather patterns. The tropospheric O3changes determined 
in this study are similar to previous study results that reported a gradual 
O3 decrease in the USA, Canada, Russia, and Europe (Talukdar et al., 
2020); while in the month of May 2020 we also noted subtle increase in 
O3 as observed by other study (Wu et al., 2020). Furthermore, the O3 
photochemistry in temperate latitudes from February–March is slower 
due to low solar irradiation, whereas at lower latitudes, O3 buildup can 
be significant. Our findings showed a unique pattern of tropospheric 
pollutants over a longer period. The continuation of this trend in the 
future and its extent depends on the implementation of anthropogenic 
activity restrictions, which are primarily dictated by government 
policies. 

An LST analysis was also performed to assess the impact of pollution 
on emitted radiation; however, LST is indirectly related to the radiation 
received by the earth’s surface, which varies seasonally. The LST anal
ysis results showed that the LST was decreased in Brazil, India, and 
Spain from January–May 2020 compared to the corresponding period of 
2019. However, France, Germany, and the UK only showed a decreased 
average LST in February and March, which might be the impetus of the 
lockdown. No significant pattern was observed in the rest of the coun
tries studied. Except for the LST reductions in the above-mentioned 
countries, the inconsistent LST patterns and changes are attributed to 
the seasonal shift of the Intertropical Convergence Zone caused by the 
location of the sun in the remaining investigated countries located in 
tropical, temperate, or sub-polar climate zones. Few studies have 
examined the relationship between LST and air pollution (Maithani 
et al., 2020; Song et al., 2018; Zheng et al., 2016; Feizizadeh and 
Blaschke, 2013); therefore, we performed this analysis as part of this 
study. The results showed that air pollution improvement has certain 
impacts on LST, which was evidenced in some countries by a declining 
LST trend throughout the study period, and in a few countries, it reduced 
immediately after the lockdown period began. A similar approach was 
utilized in a study conducted in India that highlighted the effect of the 
lockdown on the spatiotemporal LST patterns (Maithani et al., 2020). 
That study found that pollution levels were considerably lower during 
the lockdown period due to restricted vehicular movement and the 
absence of commercial and industrial activities, which caused a reduc
tion in the greenhouse effect, allowing long-wave radiation to escape; 
therefore, the mean LSTs were lower in 2020 than in the previous years 
(Maithani et al., 2020). Another study performed a five-year 
(2001–2006) LST and PM2.5 analysis that showed a concurrent in
crease in LST with PM2.5, which could be attributed to the greenhouse 
effect of aerosol pollutants (Song et al., 2018). Another study conducted 
in Guangzhou, China, determined a strong correlation (R2 = 0.8) be
tween LST and PM2.5 concentration, which generally fluctuates 
seasonally (Zheng et al., 2016). Feizizadeh and Blaschke found a cor
relation between highly air-polluted areas and LST in Tabriz and Iran, 
suggesting a direct impact of PM levels on LST (Feizizadeh and Blaschke, 
2013). The findings in this study clearly show that AP levels decreased 
during the lockdown, which directly contributed to LST reductions. 

Our analysis of more than 40 cities worldwide showed that the 
ground air pollution levels improved in most of the locations in 2020, 
albeit to a varying level, and is likely attributed to the restriction of 
anthropogenic activities during the lockdowns. The reductions in 
ground-level NO2, PM2.5, PM10, and O3 concentrations were evident in 
most studied locations (Shrestha et al., 2020). Asian (Delhi, Mumbai, 

Kolkata, Dhaka, Wuhan, Beijing, Istanbul, and Dubai) and European 
(Milan, Rome, Madrid, Berlin, and Paris) cities benefited the most from 
the lockdowns. Shrestha et al. performed a pollutant analysis of 40 cities 
worldwide from February 2019–March 2020 and determined that the 
pollution levels declined in most cities (Shrestha et al., 2020). This 
agrees with the findings of this study; however, our analysis of the 
lockdown reliably demonstrates both immediate and long-term impacts 
on pollutants and demarcates the differences between pollutants over a 
five-month period. Several recent short-term (one week or month 
duration) studies on the impact of the lockdowns on APs, however, 
insufficiently portray the actual impacts due to their short durations 
(Shrestha et al., 2020; Urrego and Urrego, 2020). Because the imposed 
lockdown dates, durations, and phases varied in the different countries, 
a long-term AP study should be performed. For example, in India, a 
complete lockdown was instituted at the end of March, whereas cities in 
western countries such as the USA, the UK, and South America observed 
multi-phase, partial lockdowns. Under such conditions, short-term 
studies on lockdown effects show its immediate impact on APs but do 
not show the concentration variations of the different pollutants in the 
different phases of unlocking the shutdown. 

Biological studies have suggested that long- and short-term exposure 
to ambient ground-level O3 and NO2 can play an important role in the 
clinical manifestation of cardiorespiratory diseases (Conticini et al., 
2020; Ogen, 2020; Travaglio et al., 2020; Lippi et al., 2020) and 
adversely affect organs targeted by SARS-CoV-2 (Brauer, 2010). Multi
ple studies have shown a relationship between APs and COVID-19 
cases/mortalities in specific regions (Conticini et al., 2020; Cole et al., 
2020; Qin et al., 2020; Wu et al., 2020); however, a global investigation 
of the long-term impact of APs on COVID-19 cases/mortalities is 
necessary. This study performed a comprehensive association analysis in 
locations with the worst virus outbreaks during the study period. The 
relationship between APs and COVID-19 has been studied; however, 
minimal studies have determined the role of specific APs in augmenting 
COVID-19 cases and deaths (Cole et al., 2020; Wu et al., 2020; Setti 
et al., 2020; Naqvi et al., 2021). Cole et al. examined long-term air 
pollution exposure in 355 Dutch municipalities to identify the rela
tionship between PM2.5, NO2, and SO2 concentrations with COVID-19 
cases, hospital admissions, and deaths. The results showed a weak 
positive correlation between PM2.5 and COVID-19 deaths (R2 = 0.23) 
compared to the correlations with COVID-19 cases and hospital admis
sions (R2<0.15) (Cole et al., 2020). The COVID-19 association with NO2 
and SO2 concentrations was comparatively weaker (R2<0.1) than that of 
PM2.5. According to their model, the results revealed that a 1 μg/m3 

increase in the PM2.5 concentration caused a 9.4%–15.1% increase in 
COVID-19 cases (Cole et al., 2020). Another study examined COVID-19 
deaths in more than 3000 counties in the USA and reported that a 1 
μg/m3 increase in the PM2.5 concentration caused an 8% increase in 
COVID-19 deaths. Therefore, a small increase in long-term PM2.5 
exposure can lead to a substantial increase in COVID-19 deaths (Wu 
et al., 2020). A high PM10 concentration was determined to be a sig
nificant predictor of COVID-19 infection in Italy (Setti et al., 2020). This 
study determined that northern Italian provinces with high PM10 con
centrations had a median of 0.26 COVID-19 infections per 1000 resi
dents, whereas southern Italian provinces with low PM10 concentrations 
had a median of 0.03 COVID-19 infections per 1000 residents (Setti 
et al., 2020). In this study, the major hotspots in India demonstrated a 
moderate positive correlation between COVID-19 mortalities (assessed 
at two time points) with the ground-level PM10 concentration (R2 =

0.145; r = 0.38) and air quality index (R2 = 0.17; r = 0.412) pollutant 
indicators (Naqvi et al., 2021). Overall, this study comprehensively 
analyzed tropospheric and ground-level APs and identified moderate 
positive association between ground-level NO2 concentration and 
COVID-19 cases (R2 = 0.33; r = 0.57) and mortalities (R2 = 0.40; r =
0.63) and determined that NO2 concentration is a reliable indicator. The 
weak-moderate positive relationship of O3 pollutant was found with 
COVID-19 cases (R2 = 0.22; r = 0.47) and mortalities (R2 = 0.12; r =
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0.35). However, no associations were observed between PM2.5 and PM10 
concentrations with COVID-19 cases and mortalities. We also performed 
analysis with all the data points included. Among the pollutants exam
ined, NO2 and O3 showed weak correlation before outlier removal and 
this changed to moderate correlation after exclusion of outliers. For 
other pollutants (PM2.5, and PM10), negligible improvement in correla
tion was observed after removal of outliers. 

We acknowledge few limitations of this study. (i) Inconsistent lock
down period and stringency: The study period assessed tropospheric and 
ground-level pollutant concentrations pre- and post-lockdown. Howev
er, the lockdown period was not the same for all the studied countries. 
Even within the same country, varied lockdown levels (full or partial) 
were imposed in different regions at different times. As such, a similar 
study period for pre- and post-lockdown for all the countries included in 
this study would have provided a more controlled analysis. The extent of 
lockdown period, stringency of lockdown, community social distancing 
and safety precautions influence viral spread that varied globally and is 
beyond the scope of the current study. (ii) Data Availability: Insufficient 
ground-level air quality indices and COVID-19 cases/mortality data for 
all cities have hindered extensive global analysis. (iii) Percent change in 
air pollutants and its impact on correlation analysis of COVID-19 cases and 
mortality. This study employed average monthly changes in air pollut
ants for correlation with COVID-19 cases and mortality; however, we did 
not account for the lag times due to the SARS-CoV-2 incubation period 
(generally considered as 15 days). This may have yielded different re
sults outcomes. (iv) We did not normalize our data with other con
founders such as the population density, proportion of ageing 
population and social distancing implementation. Even with the afore
mentioned limitations, this study mainly focused on assessing global air 
pollution improvement due to the lockdowns. Correlating the clinical 
outcomes of COVID-19 with adverse air pollution conditions would 
support the findings of this study and will provide a roadmap for 
research on the effect of APs on future pandemics related to chronic 
respiratory diseases. This would facilitate the development of public 
health policies to prepare for pandemics and mitigate their adverse ef
fects in polluted, densely populated regions worldwide. 
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